潘细朋
学术型博导
***
pxp201@163.com
计算机与信息安全学院
https://www.researchgate.net/profile/Xipeng-Pan-2/research
个人简介

潘细朋,工学博士,临床医学博后,副教授,硕士生导师,博士生导师,八桂青年拔尖人才,广西杰出青年科学基金获得者,南宁市高层次人才D类,2025年入选全球前2%顶尖科学家。目前主要从事人工智能、机器学习、医学影像大数据分析及应用方面的研究,主持国家自然科学基金2项、广西杰出青年科学基金项目、中国博士后科学基金面上项目等科研项目7项。近5年来,在医学图像处理顶级期刊Medical Image Analysis、IEEE TMI、IEEE TCSVT、IEEE TCE和顶级会议AAAI、MICCAI等发表学术论文30余篇,谷歌学术引用3739次;医学影像分析方面以第一作者授权国家发明专利3项,美国专利2项。相关成果获2025年、2022年八桂人工智能科学技术奖自然科学类一等奖(分别排名第2和第3);获2021年老挝琅南塔省科技进步奖一等奖(排名第3)。担任国家基金项目通讯评审专家、多所重点高校的研究生论文评审专家;担任IEEE TMI、IEEE TIP等学术期刊评阅人;担任ISAIR国际会议Cognitive Medical Processing领域共同主席(2021-2024年)、广西人工智能学会理事兼智慧医疗与大健康领域分会副秘书长。近5年,指导多名本科生学习和研究,已保研双一流高校;指导5名研究生获区级或校级创新项目,5名本科生获国家级大学生创新项目,1名本科生获区级大学生创新项目;指导研究生、本科生获互联网+大学生创新创业大赛广西赛区选拔赛金奖、银奖各1项,并获优秀创新创业导师;指导学生毕业设计,获校级优秀本科毕业设计一等奖3名。 本团队与广东省人民医院(广东省医学科学院)等多家三甲医院合作,联合培养医工交叉人才,欢迎对机器学习、深度学习、医学图像处理感兴趣,有良好编程、数学、英语基础的同学报考研究生,一起合作研究,共同进步。 联系邮箱:pxp201@163.com,电子邮件请附如下信息:详细简历、技能或特长、科研或项目经历(如有)、证书与获奖、数学和外语水平。



教育背景

2014/09-2019/09,北京邮电大学,自动化学院,工学博士,毕业论文评审和毕业论文答辩优秀

2010/09-2013/06,桂林电子科技大学,电子工程与自动化学院,工学硕士

2003/09-2007/07,桂林电子科技大学,计算机与控制学院,工学学士,一等奖学金获得者



工作经历

2019/09-至今,桂林电子科技大学,计算机与信息安全学院,副教授,硕士生导师,博士导师

2020/08-2022/11,广东省人民医院(广东省医学科学院),放射科,博士后,优秀出站

2013/07-2014/09,桂林电子科技大学,广西信息科学实验中心,技术员

2009/09-2010/08,飞天网络技术有限公司,工程师

2007/07-2008/08,艾诺玛自动化工控设备有限公司广州分公司,工程师

 

论文情况

会议论文

[1]Yajun An#, Jiale Chen#, Huan Lin#, Zhenbing Liu, Siyang Feng, Hualong Zhang, Rushi Lan*, Zaiyi Liu*, and Xipeng Pan*, “CA-MLIF: Cross-Attention and Multimodal Low-Rank Interaction Fusion Framework for Tumor Prognostic Prediction”.(已被人工智能顶会AAAI 2025录用)

[2]Siyang Feng, Huadeng Wang, Chu Han, Zhenbing Liu, Hualong Zhang, Rushi Lan*, and Xipeng Pan*, “Weakly Supervised Gland Segmentation with Class Semantic Consistency and Purified Labels Filtration”.(已被人工智能顶会AAAI 2025录用)

[3]Siyang Feng, Jiale Chen, Zhenbing Liu, Wentao Liu, Zimin Wang, Rushi Lan*, and Xipeng Pan*, “Mining Gold from the Sand: Weakly Supervised Histological Tisue Segmentation with Activation Relocalization and Mutual Learning,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2024, vol. 15008, M. G. Linguraru, Q. Dou, A. Feragen, S. Giannarou, B. Glocker, K. Lekadir, and J. A. Schnabel, Eds., in Lecture Notes in Computer Science, vol. 15008. , Cham: Springer Nature Switzerland, 2024, pp. 414–423. doi: 10.1007/978-3-031-72111-3_39.(医学图像处理领域顶会)

[4]Xipeng Pan, Yajun An, Rushi Lan*, Zhenbing Liu, Zaiyi Liu, Cheng Lu, and Huihua Yang*, “PG-MLIF: Multimodal Low-Rank Interaction Fusion Framework Integrating Pathological Images and Genomic Data for Cancer Prognosis Prediction,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2024, vol. 15003, M. G. Linguraru, Q. Dou, A. Feragen, S. Giannarou, B. Glocker, K. Lekadir, and J. A. Schnabel, Eds., in Lecture Notes in Computer Science, vol. 15003. , Cham: Springer Nature Switzerland, 2024, pp. 347–357. doi: 10.1007/978-3-031-72384-1_33.(医学图像处理领域顶会)

[5]Xipeng Pan, Feihu Hou, Zhenbing Liu, Siyang Feng, and Rushi Lan*, “EOFD-Net: Edge Optimization and Feature Denoising for Weakly Supervised Deep Nuclei Segmentation with Point Annotations,” in ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Korea, Republic of: IEEE, Apr. 2024, pp. 2180–2184. doi: 10.1109/ICASSP48485.2024.10448142.(声学、语音与信号处理领域顶级会议)


期刊论文

[1]Xipeng Pan#, Jijun Cheng#, Feihu Hou#, Rushi Lan, Cheng Lu, Lingqiao Li, Zhengyun Feng, Huadeng Wang, Changhong Liang, Zhenbing Liu*, Xin Chen*, Chu Han*, and Zaiyi Liu*, “SMILE: Cost-sensitive multi-task learning for nuclear segmentation and classification with imbalanced annotations,” Medical Image Analysis, vol. 88, p. 102867, Aug. 2023, doi: 10.1016/j.media.2023.102867.(医学人工智能顶级期刊,2023 IF=10.7,谷歌学术引用29次)

[2]Chu Han#, Huasheng Yao#, Bingchao Zhao#, Zhenhui Li, Zhenwei Shi, Lei Wu, Xin Chen, Jinrong Qu, Ke Zhao, Rushi Lan*, Changhong Liang*, Xipeng Pan*, and Zaiyi Liu*, “Meta multi-task nuclei segmentation with fewer training samples,” Medical Image Analysis, vol. 80, p. 102481, Aug. 2022, doi: 10.1016/j.media.2022.102481.(医学人工智能顶级期刊,2023 IF=10.7,谷歌学术引用37次)

[3]Xipeng Pan, Mingwei Chen, Huan Lin, Xinjun Bian, Siyang Feng, Jiale Chen, Lin Wang, Xin Chen, Zaiyi Liu*, and Rushi Lan*, “LesionMix data enhancement and entropy minimization for semi-supervised lesion segmentation of lung cancer,” Applied Soft Computing, vol. 167, p. 112244, Dec. 2024, doi: 10.1016/j.asoc.2024.112244.(中科院一区,2023 IF=7.2)

[4]Zhenbing Liu, Fengfeng Wu*, Yumeng Wang, Mengyu Yang, and Xipeng Pan*, “FedCL: Federated contrastive learning for multi-center medical image classification,” Pattern Recognition, vol. 143, p. 109739, Nov. 2023, doi: 10.1016/j.patcog.2023.109739.(中科院一区,2023 IF=7.5,谷歌学术引用32次)

[5]Wenyi Zhao, Lu Yang, Weidong Zhang, Yongqin Tian, Wenhe Jia, Wei Li, Mu Yang, Xipeng Pan*, and Huihua Yang*, “Learning What and Where to Learn: A New Perspective on Self-Supervised Learning,” IEEE Trans. Circuits Syst. Video Technol., vol. 34, no. 8, pp. 6620–6633, Aug. 2024, doi: 10.1109/TCSVT.2023.3298937.(中科院一区,2023 IF=8.3,谷歌学术引用10次)

[6]Huayi Zhu, Heshan Wu, Dongmei He, Rushi Lan, Zhenbing Liu*, and Xipeng Pan*, “AcFusion: Infrared and Visible Image Fusion Based on Self-Attention and Convolution With Enhanced Information Extraction,” IEEE Trans. Consumer Electron., vol. 70, no. 1, pp. 4155–4167, Feb. 2024, doi: 10.1109/TCE.2023.3341852.(中科院二区,2023 IF=4.3)

[7]Xipeng Pan, Lingqiao Li, Huihua Yang*, Zhenbing Liu, Jinxin Yang, Lingling Zhao, and Yongxian Fan, “Accurate segmentation of nuclei in pathological images via sparse reconstruction and deep convolutional networks,” Neurocomputing, vol. 229, pp. 88–99, Mar. 2017, doi: 10.1016/j.neucom.2016.08.103.(中科院二区,计算机科学类顶级期刊,2023 IF=5.5,谷歌学术引用147次)

[8]Xipeng Pan#, Huan Lin#, Chu Han#, Zhengyun Feng#, Yumeng Wang, Jiatai Lin, Bingjiang Qiu, Lixu Yan, Bingbing Li, Zeyan Xu, Zhizhen Wang, Ke Zhao, Zhenbing Liu, Changhong Liang, Xin Chen*, Zhenhui Li*, Yanfen Cui*, Cheng Lu*, and Zaiyi Liu*, “Computerized tumor-infiltrating lymphocytes density score predicts survival of patients with resectable lung adenocarcinoma,” iScience, vol. 25, no. 12, p. 105605, Dec. 2022, doi: 10.1016/j.isci.2022.105605.(中科院二区,CELL出版社子刊,2023 IF=4.6,谷歌学术引用26次)

[9]Xipeng Pan, Dengxian Yang, Lingqiao Li, Zhenbing Liu, Huihua Yang*, Zhiwei Cao, Yubei He, Zhen Ma, and Yiyi Chen, “Cell detection in pathology and microscopy images with multi-scale fully convolutional neural networks,” World Wide Web, vol. 21, no. 6, pp. 1721–1743, Nov. 2018, doi: 10.1007/s11280-017-0520-7.(谷歌学术引用45次)

[10]Xipeng Pan, Yinghua Lu, Rushi Lan*, Zhenbing Liu, Zujun Qin, Huadeng Wang, and Zaiyi Liu*, “Mitosis detection techniques in H&E stained breast cancer pathological images: A comprehensive review,” Computers & Electrical Engineering, vol. 91, p. 107038, May 2021, doi: 10.1016/j.compeleceng.2021.107038.(谷歌学术引用44次)

[11]Jiatai Lin#, Guoqiang Han#, Xipeng Pan#, Zaiyi Liu, Hao Chen, Danyi Li, Xiping Jia, Zhenwei Shi, Zhizhen Wang, Yanfen Cui, Haiming Li, Changhong Liang, Li Liang*, Ying Wang*, and Chu Han*, “PDBL: Improving Histopathological Tissue Classification With Plug-and-Play Pyramidal Deep-Broad Learning,” IEEE Trans. Med. Imaging, vol. 41, no. 9, pp. 2252–2262, Sep. 2022, doi: 10.1109/TMI.2022.3161787.(医学人工智能顶级期刊,中科院一区,2023 IF=8.9,谷歌学术引用45次)

[12]Zhengyun Feng#, Huan Lin#, Zaiyi Liu#, Lixu Yan#, Yumeng Wang, Bingbing Li, Entao Liu, Chu Han, Zhenwei Shi, Cheng Lu, Zhenbing Liu, Cheng Pang, Zhenhui Li*, Yanfen Cui*, Xipeng Pan*, and Xin Chen*, “Artificial intelligence-quantified tumour-lymphocyte spatial interaction predicts disease-free survival in resected lung adenocarcinoma: A graph-based, multicentre study,” Computer Methods and Programs in Biomedicine, vol. 238, p. 107617, Aug. 2023, doi: 10.1016/j.cmpb.2023.107617.(中科院二区,2023 IF=4.9)

[13]Huadeng Wang, Guang Xu, Xipeng Pan*, Zhenbing Liu, Rushi Lan*, and Xiaonan Luo, “Multi-task generative adversarial learning for nuclei segmentation with dual attention and recurrent convolution,” Biomedical Signal Processing and Control, vol. 75, p. 103558, May 2022, doi: 10.1016/j.bspc.2022.103558.(中科院二区,2023 IF=4.9,谷歌学术引用20次)

[14]Lingqiao Li#, Xipeng Pan#, Huihua Yang*, Zhenbing Liu, Yubei He, Zhongming Li, Yongxian Fan, Zhiwei Cao, and Longhao Zhang, “Multi-task deep learning for fine-grained classification and grading in breast cancer histopathological images,” Multimed Tools Appl, vol. 79, no. 21–22, pp. 14509–14528, Jun. 2020, doi: 10.1007/s11042-018-6970-9.(谷歌学术引用104次)

[15]Huan Lin#, Xipeng Pan#, Zhengyun Feng#, Lixu Yan#, Junjie Hua, Yanting Liang, Chu Han, Zeyan Xu, Yumeng Wang, Lin Wu, Yanfen Cui, Xiaomei Huang, Zhenwei Shi, Xin Chen, Xiaobo Chen, Qingling Zhang, Changhong Liang*, Ke Zhao*, Zhenhui Li*, and Zaiyi Liu*, “Automated whole-slide images assessment of immune infiltration in resected non-small-cell lung cancer: towards better risk-stratification,” J Transl Med, vol. 20, no. 1, p. 261, Dec. 2022, doi: 10.1186/s12967-022-03458-9.(中科院二区,2023 IF=6.1,谷歌学术引用13次)

[16]Yumeng Wang#, Huan Lin#, Ningning Yao#, Xiaobo Chen#, Bingjiang Qiu, Yanfen Cui, Yu Liu, Bingbing Li, Chu Han, Zhenhui Li, Wei Zhao, Zimin Wang, Xipeng Pan*, Cheng Lu*, Jun Liu*, Zhenbing Liu*, and Zaiyi Liu*, “Computerized tertiary lymphoid structures density on H&E-images is a prognostic biomarker in resectable lung adenocarcinoma,” iScience, vol. 26, no. 9, p. 107635, Sep. 2023, doi: 10.1016/j.isci.2023.107635.(中科院二区,CELL出版社子刊,2023 IF=4.6,谷歌学术引用21次)

[17]Yumeng Wang#, Xipeng Pan#, Huan Lin#, Chu Han#, Yajun An, Bingjiang Qiu, Zhengyun Feng, Xiaomei Huang, Zeyan Xu, Zhenwei Shi, Xin Chen, Bingbing Li, Lixu Yan, Cheng Lu*, Zhenhui Li*, Yanfen Cui*, Zaiyi Liu*, and Zhenbing Liu*, “Multi-scale pathology image texture signature is a prognostic factor for resectable lung adenocarcinoma: a multi-center, retrospective study,” J Transl Med, vol. 20, no. 1, p. 595, Dec. 2022, doi: 10.1186/s12967-022-03777-x.(中科院二区,2023 IF=6.1,谷歌学术引用10次)

[18]Xiwang Xie, Weidong Zhang, Huadeng Wang, Lingqiao Li, Zhengyun Feng, Zhizhen Wang, Zimin Wang*, and Xipeng Pan*, “Dynamic adaptive residual network for liver CT image segmentation,” Computers & Electrical Engineering, vol. 91, p. 107024, May 2021, doi: 10.1016/j.compeleceng.2021.107024.(谷歌学术引用82次)

[19]Xiwang Xie#, Xipeng Pan#, Feng Shao, Weidong Zhang, and Jubai An*, “MCI-Net: Multi-scale context integrated network for liver CT image segmentation,” Computers and Electrical Engineering, vol. 101, p. 108085, Jul. 2022, doi: 10.1016/j.compeleceng.2022.108085.(谷歌学术引用70次)

 

知识产权

发明专利

[1]潘细朋;卢英华;刘振丙;秦祖军;蓝如师;杨辉华;汪华登;李灵巧;王子民;程纪钧;王志臻;冯拯云;宋世龙;一种乳腺癌H&E染色病理图像有丝分裂自动识别系统和方法;ZL202210659966.0,2023.4.11 (已转化高新企业)

[2]潘细朋;邓华虎;蓝如师;刘振丙;李灵巧;汪华登;安娅君;侯飞虎;卞新军;基于在线噪声抑制策略的弱监督病理图像组织分割方法;ZL202211643031.X,2023.9.5(已转化高新企业)

[3]潘细朋;程纪钧;刘振丙;王子民;汪华登;冯拯云;卢慧敏;安娅君;一种HE染色病理图像数据扩充与增强的方法;ZL202210054661.7,2023.4.18

[4]Xipeng Pan; Huahu Deng; Rushi Lan; Zhenbing Liu; Lingqiao Li; Huadeng Wang; Xinjun Bian; Yajun An; Feihu Hou; Weakly supervised pathological image tissue segmentation method based on online noise suppression strategy; 美国专利;US011935279B1,2024.3.19

[5]Xipeng Pan; Xinjun Bian; Yinghua Lu; Zhenbing Liu; Zujun Qin; Rushi Lan; Huihua Yang; Huadeng Wang; Lingqiao Li; Ziming Wang; Jijun Cheng; Zhizhen Wang; Zhengyun Feng; Shilong Song; System and method for automatically identifying mitosis in H and E stained breast cancer pathological images; 美国专利; US12002206B2,2024.6.4

[6]潘细朋;侯飞虎;郭俊宇;蓝如师;汪华登;邓华虎;安娅君;基于边缘优化和特征去噪的弱监督细胞核分割方法及装置;申请号:202311651607,实质审查中

[7]潘细朋;安娅君;林欢;杨辉华;周南;卞新军;刘再毅;基于交叉 Transformer 和 MLIF 的多模态融合生存预后方法;申请号:2023118503536,实质审查中

[8]潘细朋;安娅君;杨辉华;刘振丙;陆铖;周南;邓华虎;王钰萌;卞新军;基于病理和基因的多模态融合生存预后方法及装置;申请号:2023116516029,实质审查中

[9]潘细朋;宋世龙;冯拯云;卞新军;李灵巧;刘振丙;陆铖;刘再毅; 基于双分支融合网络的病理图像智能分类系统及方法;申请号:2023110209506,实质审查中

[10]潘细朋;俸思洋;王子民;刘振丙;刘再毅;陈明威;邓华虎;基于空间通道注意力增强的肺腺癌CT影像病灶分割方法;申请号:2023115243950,实质审查中

[11]潘细朋;陈家乐;裴书芳;刘振丙;卞新军;范传松;俸思洋;一种肝脏肿瘤 CT 影像分割与可视化方法及系统;申请号:2023115833731,实质审查中

[12]潘细朋;陈明威;蓝如师;刘再毅;卞新军;俸思洋;陈家乐;基于 LesionMix 和最小化的半监督肺癌医学影像分割方法及装置;申请号:202311651600X,实质审查中

[13]刘再毅;潘细朋;冯拯云;陈浩;林欢;赵可;梁长虹;李振辉;韩楚;陈鑫;王钰萌;陈小波;颜黎栩;非小细胞肺癌IHC染色图像肿瘤区域免疫分级方法、系统及存储介质;申请号:202111675374.X,实质审查中

[14]刘再毅;潘细朋;王志臻;陈浩;许睿;梁长虹;刘振丙;陈鑫;韩楚;颜黎栩;非小细胞肺癌H&E染色图像多种组织分割方法、系统及存储介质;申请号:202111675359.5,实质审查中

[15]刘再毅;潘细朋;王瑛;程纪钧;韩楚;刘振丙;陆铖;陈浩;陈鑫;冯拯云;侯飞虎;梁长虹;H&E染色组织病理图像细胞核分割与分类系统、方法、设备及介质;申请号:202210191562.3,实质审查中

[16]刘再毅;刘振丙;王钰萌;潘细朋;韩楚;王瑛;林欢;冯拯云;陈鑫;梁长虹;肺腺癌H&E染色病理图像肿瘤区域多尺度特征提取与预后分析方法,系统及存储介质;申请号:202210449852.3,实质审查中

[17]姚华升;韩楚;陈鑫;潘细朋;俞祝良;刘再毅;梁长虹;一种HE病理图像细胞核分割方法及系统;申请号:202110670248.9,实质审查中

[18]刘再毅;方刚;龚正则;刘文斌;潘细朋;陆铖;韩楚;赵秉超;蔡茗;王志臻;梁长虹;基于对抗生成网络的组织微阵列病理切片染色变换方法;申请中

[19]韩楚;林佳泰;韩国强;刘再毅;梁长虹;石镇维;潘细朋;李振辉;陈鑫;赵可;一种新型多尺度深宽结合的病理图片分类方法、系统及介质;ZL202110923812.3,2022.12.6

[20]刘再毅;杨尚青;居胜红;孟祥盼;赵可;梁长虹;潘细朋;彭嘉铭;陈鑫;肝癌IHC染色图的血管分布模式的识别方法、系统和存储介质;ZL202110793757.0,2022.7.5


计算机软件著作权登记

[1]潘细朋;冯拯云;刘再毅;卞新军;非小细胞肺癌组织和细胞分割识别及信息统计软件V1.0;2023SR0402734;2023.1.31

[2]潘细朋;邓华虎;卞新军;刘振丙;路皓翔;多病种数字病理组织分割软件V1.0;2023SR0424642;2023.2.12

[3]卢英华;秦祖军;刘振丙;潘细朋;汪华登;冯拯云;陈明威;基于深度学习的乳腺癌病理图像有丝分裂细胞识别软件V1.0;2022SR0451621;2022.2.18

[4]姚华升;韩楚;陈鑫;潘细朋;俞祝良;刘再毅;梁长虹;病理图像多组织细胞核分割软件V1.0;2021SR0402873;2021.1.15

[5]程纪钧;李振生;潘细朋;刘振丙;王子民;卢英华;多病种的病理图像识别软件V1.0;2021SR0133885;2020.11.2

[6]刘再毅;梁长虹;赵可;陈鑫;韩楚;潘细朋;石镇维;吴磊;广州知会云科技有限公司;医学图像智能随访辅助系统V1.0;2021SR1400436;2021.6.1

[7]汪华登;许浩;潘细朋;蓝如师;基于深度学习的乳腺癌病理图像细胞核检测软件v1.0;2022SR1340540;2022.10.17.

[8]汪华登;刘志鹏;潘细朋;蓝如师;基于深度学习的乳腺癌病理图像细胞核分割软件v1.0;2022SR1340550;2022.10.17.

 

科研项目

主持(参与)科研项目

[1]广西自然科学基金杰出青年基金, 肿瘤病理图像智能分析与临床应用,2024-05至2028-4,在研,主持

[2]国家自然科学基金地区科学基金,基于多时序CT影像与病理WSI的非小细胞肺癌新辅助免疫治疗疗效预测研究,2024-01至2027-12,在研,主持

[3]国家自然科学基金青年基金,基于深度学习的多中心HE染色乳腺病理图像细胞核分割与识别方法研究,2021-01至2023-12,已结题,主持

[4]中国博士后科学基金,基于CT影像和病理WSI精准预测早期非小细胞肺癌术后复发风险的研究,2021-06至2023-05,已结题,主持

[5]广西自然科学基金青年基金,面向乳腺癌计算机辅助病理诊断的HE染色数字病理图像分析,2020-10至2023-09,已结题,主持

[6]广西高校中青年教师科研基础能力提升项目,面向乳腺癌分级诊断的HE染色病理图像分析,2020-01至2021-12,已结题,主持

[7]桂林电子科技大学科学研究基金项目,病理图像细胞检测、分割及识别方法研究,2020-01至2022-12,在研,主持

[8]广东省重点领域研发计划项目,基于深度学习多组学的乳腺癌辅助诊疗与预后预测系统,2021-01至2022-12,已结题,参与

[9]国家重点研发计划子课题,病理与影像-组学-临床信息的交叉与融合新技术,2022-01至2024-12,在研,参与

[10]国家自然科学基金面上项目,基于多时序多空间MRI与深度学习预测cN1-2期乳腺癌新辅助治疗后腋窝淋巴结pCR的研究,2022-01至2025-12,在研,参与

[11]国家自然科学基金联合基金项目重点支持项目,基于多模态信息构建II期结直肠癌术后复发风险智能量化模型的关键问题研究,2023-01至2026-12,在研,参与

[12]国家自然科学基金面上项目,基于MRI和多色病理的亚区域-全域空间特征预测晚期高级别浆液性卵巢癌PARPi耐药的研究,2023-01至2026-12,在研,参与

 

成果奖励

获奖情况:

[1]刘振丙,蓝如师,潘细朋,李灵巧,路皓翔,视觉信息特征提取中的关键技术及其应用,八桂人工智能科学技术奖自然科学类,一等奖,2022年

[2] Lan Rushi, Liu Zhenbing, Pan Xipeng, Chang Liang, Lu Jianming, Wang Huadeng,Li Ji, Xu Songhua, Yan Suging, Luo Xiaonan,“Intelligent medical information analysis system”老挝琅南塔省科技进步奖,一等奖,2021年

[3]潘细朋,非小细胞肺癌数字病理图像处理与预后分析,博士后出站考核评定优秀,2022年

[4]Chu Han;Xipeng Pan;Jiatai Lin;Hongjiang Wu;Hao Wang;Juncong Le乳腺癌肿瘤浸润淋巴(TIGER),Grand Challenge挑战赛 分割与检测赛道决赛,全球第四名,2022年

[5]潘细朋,第九届中国国际“互联网+”大学生创新创业大赛“数广集团杯”广西赛区选拔赛,优秀创新创业导师,2023年

[6]潘细朋,第二届广西大学生人工智能设计大赛优秀指导教师,2020年

[7]潘细朋,2013年全国高性能计算学术年会先进个人,杰出服务奖,2013年

[8]潘细朋,计算机与信息安全学院纪念建党102周年“优秀共产党员”荣誉称号,2023年


 

主讲课程

[1]人工智能

[2]数字图像处理

[3]写作与沟通2


个人主页(中文):

https://yjsjy.guet.edu.cn/(S(s2pxuoe5z5vvb2lij5ucqixr))/dsfc/dsfcgrxx/987B780C91525E29B72C79D777F728C8

Researchgate

https://www.researchgate.net/profile/Xipeng-Pan-2/research

谷歌学术:

https://scholar.google.com/citations?user=bkTD494AAAAJ&hl=zh-CN&oi=ao


 

研究方向

人工智能;机器学习;深度学习;医学图像分析及应用